НАРУЖНЫЕ БЛОКИ

Серия Hyper Inverter

Hyper Inverter – самые современные и технологически продвинутые наружные блоки в модельном ряду Mitsubishi Heavy Industries. Серия отличается наивысшим в отрасли уровнем энергосбережения, широкими возможностями мощного теплового насоса, увеличенной длиной межблочных магистралей.

Mitsubishi Heavy Industries заботится об окружающей среде и старается снизить степень техногенного воздействия посредством повышения показателей экологичности и энергосбережения выпускаемого оборудования. Этот принцип реализован в серии Hyper Inverter на 100%. Благодаря техническим характеристикам чрезвычайно мощного и экономичного теплового насоса, оборудование способно обогревать помещение при уличной температуре до -20°C без значительного снижения производительности. Применение новейших технологий и материалов позволило в 2 раза (до 100 м) увеличить допустимую длину межблочной магистрали в моделях от 10 до 14 кВт по сравнению с базовыми инверторными моделями. Монтировать наружные блоки можно без ущерба для облика здания, в любом подходящем месте.

7 KBT FDC71VNX-W

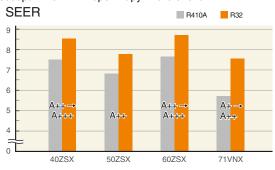
FDC100/125/140VNX-W FDC100/125/140VSX-W

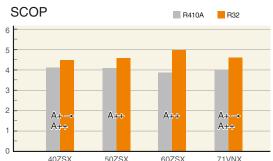
Характеристики	Модель наруж	ного блока	SRC40ZSX-W1	SRC50ZSX-W2	SRC60ZSX-W1	FDC71VNX-W
Электропитание		ф/В/Гц				
Холодопроизводительность	Номин (Мин-Макс)	кВт	4.0 (1.1 - 4.7)	5.0 (1.1 - 5.6)	5.6 (1.1 - 6.3)	7.1 (3.2 ~ 8.0)
Теплопроизводительность	Номин (Мин-Макс)	кВт	4.5 (0.6 - 5.4)	5.4 (0.6 - 6.3)	6.7 (0.6 - 6.7)	8.0 (3.6 ~ 9.0)
Номин. потребляемая мощность	Охлаждение/ Обогрев	кВт	0.89/1.03	1.29 / 1.31	1.33 / 1.56	1.69 / 1.75
Коэффициент энергоэффективности	Охлаждение/ Обогрев	EER/COP	4.49 / 4.37	3.88 / 4.12	4.21 / 4.29	4.20 / 4.58
Коэффициент сезонной энергоэффективности	Охлаждение/ Обогрев	SEER/SCOP	8.63/4.62	7.93 /4.63	8.74 /5.00	7.60 / 4.61
Класс энергоэффективности	Охлаждение/ Обогрев		A+++/A++	A++/A++	A+++/A++	A++/A++
Максимальный рабочий ток		А	15	15	15	19
Межблочный кабель		MM ²				
Уровень звукового давления	Охлаждение/ Обогрев	дБ(А)	52/50	52/50	53/54	51 / 51
Расход воздуха	Охлаждение/ Обогрев	м³/ч	1980/1980	2340/1980	2490/2340	3600/3000
Внешние габариты	(ВхШхГ)	ММ		640x800(+71)x290		750 x 880(+88) x 340
Масса		КГ	45.0			60.0
Диаметр труб хладагента	Жидкость/ Газ	мм (дюйм)		6.35 (1/4) / 12.7 (1/2)		9.52 (3/8) / 15.88 (5/8)
Максимальная длина трубопровода (длина, не требующая дозаправки)		М	30 (15)			50 (30)
Максимальный перепад высот (наружный блок выше/ниже)		М	20/20			30/15
Тип хладагента/ количество		КГ	R32/1.30			R32/2.75
Рабочий диапазон наружных Охлаждение		°C	-15~+46			-15~+50
температур	Обогрев			-20~+24		-20~+20

^{*} Данные приведены при использовании с кассетными внутренними блоками серии FDT-VH.

^{*} Технические данные предоставлены в соответствии со стандартом (ISO-T1). Охлаждение: внутренняя темп. 27°CDB, 19°CWB, наружная темп. 35°CDB. Обогрев: внутренняя темп. 20°CDB, наружная темп. 7°CDB, 6°CWB. * Уровень шума отражает показания полученные в результате измерений выполненных в безэховой камере. В нормальных условиях эксплуатации, данный

^{*} Уровень шума отражает показания полученные в результате измерений выполненных в безэховой камере. В нормальных условиях эксплуатации, данный уровень может незначительно отличаться.




Характеристики	Модель наруж	ного блока	FDC100VNX-W	FDC125VNX-W	FDC140VNX-W	FDC100VSX-W	FDC125VSX-W	FDC140VSX-W
Электропитание		ф/В/Гц	1/220-240/50			3/380-415/50		
Холодопроизводительность	Номин (Мин-Макс)	кВт	10.0 (3.5 ~ 11.2)	12.5 (3.5 ~ 14.0)	14.0 (3.5 ~ 16.0)	10.0 (3.5 ~ 11.2)	12.5 (3.5 ~ 14.0)	14.0 (3.5 ~ 16.0)
Теплопроизводительность	Номин (Мин-Макс)	кВт	11.2 (2.7 ~ 12.5)	14.0 (2.7 ~ 17.0)	16.0 (2.7 ~ 18.0)	11.2 (2.7 ~ 16.0)	14.0 (2.7 ~ 18.0)	16.0 (2.7 ~ 20.0)
Номин. потребляемая мощность	Охлаждение/ Обогрев	кВт	2.28 / 2.48	3.21 / 3.43	3.87 / 4.20	2.28 / 2.48	3.21 / 3.43	3.87 / 4.20
Коэффициент энергоэффективности	Охлаждение/ Обогрев	EER/COP	4.38 / 4.52	3.89 / 4.08	3.62 / 3.81	4.38 / 4.52	3.89 / 4.08	3.62 / 3.81
Коэффициент сезонной энергоэффективности	Охлаждение/ Обогрев	SEER/SCOP	7.73 / 4.44	7.25 / 4.44	6.79 / 4.35	7.73 / 4.44	7.25 / 4.44	6.79 / 4.35
Класс энергоэффективности	Охлаждение/ Обогрев		A++/A++	A++/A+	A++/A+	A++/A++	A++/A+	A++/A+
Максимальный рабочий ток		А	25	27	27	14	14	14
Межблочный кабель		MM ²	4x1,5					
Уровень звукового давления	Охлаждение/ Обогрев	дБ(А)	53/51	53/54	54/54	53/51	53/54	54/54
Расход воздуха	Охлаждение/ Обогрев	м³/ч	6000 / 6000	6000 / 6000	6000 / 6000	6000 / 6000	6000 / 6000	6000 / 6000
Внешние габариты	(ВхШхГ)	MM	1300 x 970 x 370					
Macca		КГ	97.0 99.0					
Диаметр труб хладагента	Жидкость/ Газ	мм (дюйм)	9.52 (3/8) / 15.88 (5/8)					
Максимальная длина трубопровода (длина, не требующая дозаправки)		М	100 (30)					
Максимальный перепад высот (наружный блок выше/ниже)		М	50/15					
Рабочий диапазон наружных температур Охлаждение Обогрев		°C	-15~+50					
					-20·	~+20		

^{*} Данные приведены при использовании с кассетными внутренними блоками серии FDT-VH.

ВЫСОКАЯ ЭНЕРГОЭФФЕКТИВНОСТЬ

Наиболее высокий уровень энергосбережения в отрасли был достигнут благодаря самым современным технологиям, таким как использование фреона нового поколения R32, высокоэффективного двухроторного компрессора, новой системе управления парокомпрессионным циклом, а также новейшим инверторным системам управления производительностью компрессора и вентиляторов наружного блока.

БОЛЬШАЯ ДЛИНА ФРЕОНОВОЙ МАГИСТРАЛИ

Применение новейших технологий и материалов позволило в 2 раза (до 100 м) увеличить допустимую длину межблочной магистрали в моделях от 10 до 14 кВт по сравнению с базовыми инверторными моделями.

Перепад высоты между блоками в данной серии достигает 20 - 50 м (в зависимости от мощности системы). Монтировать наружные блоки можно без ущерба для облика здания в любом подходящем месте.

кВт	Длина трассы	Перепад высот
4.0 ~ 6.0	30 м	20 м
7.1	50 м	30 м
10.0 ~ 14.0	100 м	50 м

ЛИДИРУЮЩЕЕ ПОЛОЖЕНИЕ В ОТРАСЛИ В ОБОГРЕВЕ ПОМЕЩЕНИЙ СРЕДИ МОДЕЛЕЙ ДАННОГО КЛАССА

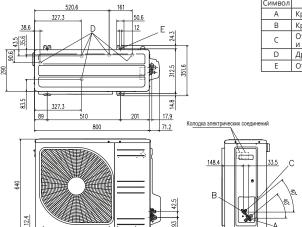
Благодаря оптимизации холодильного контура и эффективной системе управления электронным расширительным клапаном, а также использованию современных двухроторных компрессоров собственного производства, мощность обогрева была значительно увеличена. Оборудование серии Hyper Inverter способно поднять и эффективно поддерживать заданную температуру, а также сохранять номинальную теплопроизводительность вплоть до -15°C.

При использовании оборудования в режиме обогрева при температуре на улице ниже 0°С рекомендуется установка в наружный блок нагревателя дренажного поддона CW-H-E1 (опция).

CW-H-E1

FDC71VNX-W	FDC200-280VSA-W
FDC100 ~ FDC140VNX-W, VSX-W	FDC100VNP-W
FDC100 ~ FDC140VNA-W, VSA-W	

^{*} Технические данные предоставлены в соответствии со стандартом (ISO-T1). Охлаждение: внутренняя темп. 27°CDB, 19°CWB, наружная темп. 35°CDB. Обогрев: внутренняя темп. 20°CDB, наружная темп. 7°CDB, 6°CWB. * Уровень шума отражает показания полученные в результате измерений выполненных в безэховой камере. В нормальных условиях эксплуатации, данный


уровень может незначительно отличаться.

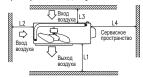
НАРУЖНЫЕ БЛОКИ

Серия Hyper Inverter

ГАБАРИТНЫЕ РАЗМЕРЫ

SRC40-60ZSX-W

Ε


418

15

Символ	Расшифровка			
Α	Кран (газ)	Ø12,7 (1/2") (Вальцовка)		
В	Кран (жидкость)	Ø6,35 (1/4") (Вальцовка)		
С	Отверстие для подсоединения труб и электрических кабелей			
D	Дренажное отверстие	Ø20x5шт		
Е	Отверстие для крепления блока	М10х4шт		

Пространство для установки

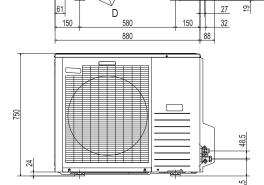
Ед.изм.: мм

Минимальные размеры для установки

Вариант Размер	I	II	III	IV
L1	Открыто	280	280	180
L2	100	75	Открыто	Открыто
L3	100	80	80	80
L4	250	Открыто	250	Открыто

СХЕМА ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ

Кабель электропитания

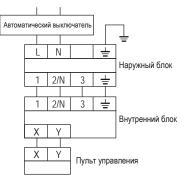

(рекомендуемый автоматический выключатель):

SRC40-60ZSX: 3x2,5 мм² (20A) Межблочный кабель: 4x1,5 мм²

340

9

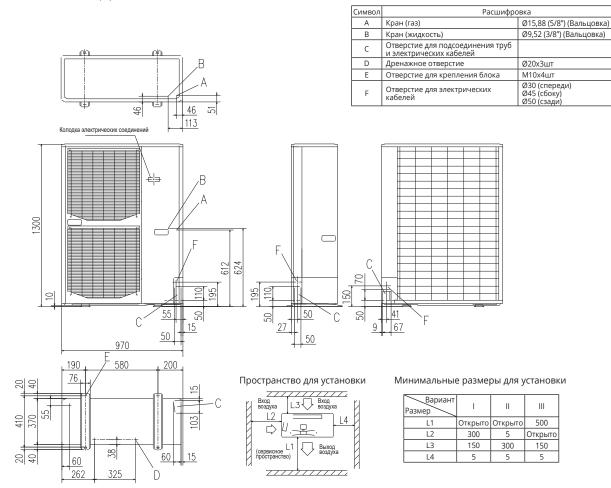
Символ	Расшифровка			
Α	Кран (газ)	Ø15,88 (5/8") (Вальцовка)		
В	Кран (жидкость)	Ø9,52 (3/8") (Вальцовка)		
С	Отверстие для подсоединения труб и электрических кабелей			
D	Дренажное отверстие	Ø20x4шт		
E	Отверстие для крепления блока	М10х4шт		


Коподка электрических соединений

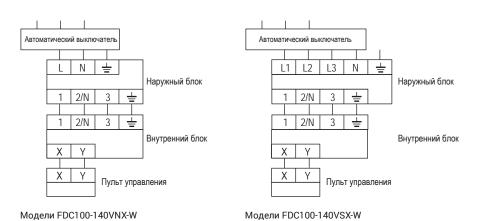
Минимальные размеры для установки

Вариант Размер	I	Ш	III
L1	Открыто	Открыто	500
L2	300	250	Открыто
L3	100	150	100
L4	250	250	250

СХЕМА ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ


Кабель электропитания (рекомендуемый автоматический выключатель):

FDC71VNX-W: 3x4.0 мм² (25A) Межблочный кабель: 4x1,5 мм²



Ед.изм.: мм

FDC100-140VN(S)X-W

СХЕМА ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ

Кабель электропитания (рекомендуемый автоматический выключатель):

FDC100-140VNX-W: 3x6,0 мм² (32A) FDC100-140VSX-W: 5x4,0 мм² (20A) Межблочный кабель: 4x1,5 мм²